全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

數(shù)學(xué)與統(tǒng)計(jì)學(xué)院"21世紀(jì)學(xué)科前沿"系列學(xué)術(shù)報(bào)告預(yù)告

Second-order Least Squares Method for High-dimensional Variable Selection

作者: ?? 來源:數(shù)學(xué)學(xué)院?? 發(fā)布日期:2015-06-01
報(bào)告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報(bào)告時(shí)間:2015年6月2日下午3:00-4:00
報(bào)告地點(diǎn):良鄉(xiāng)1-208
報(bào)告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
百家乐官网揽子打法| 百家乐官网园百利宫娱乐城怎么样百家乐官网园百利宫娱乐城如何 | 百家乐那里玩| 崇仁县| 罗盘24山图| 波音娱乐城送彩金| 风水24山头| 足球投注网址| 粤港澳百家乐娱乐平台| 百家乐官网的胜算法| 百家乐打水论坛| 百家乐官网网真人真钱群| 包赢百家乐的玩法技巧和规则 | 百家乐玩法开户彩公司| 汾西县| 百家乐论坛在线提供| 网上百家乐官网作弊下载| 金矿百家乐的玩法技巧和规则| 香港百家乐官网玩法| 大发888-娱乐网| 百家乐如何打公式| 百家乐官网技巧大全| 顶级赌场 足彩分析| 太阳城百家乐筹码租| 百家乐官网盈利分析路单| 尊龙百家乐娱乐平台| 百家乐官网免费下| 至尊百家乐官网规则| 大发888手机版下载| 澳门百家乐官网论| 网上百家乐官网骗人的吗| 大发888娱乐城官方下载安装| 百家乐赌博游戏平台| 广州百家乐官网扫描分析| 梧州市| 舟山星空棋牌首页| 威尼斯人娱乐城免费注册| 百家乐三路秘诀| bet365金融| 江西老虎机遥控器| 百家乐永利赌场娱乐网规则|