全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

宝格丽百家乐官网娱乐城| 大发888真坑阿| 免费百家乐官网统计| 同花顺百家乐官网的玩法技巧和规则 | 百家乐追号软件| 壤塘县| 百家乐官网游戏机图片| 百家乐官网稳赢秘诀教学| 百家乐打鱼秘籍| 玉龙| 土豪百家乐官网的玩法技巧和规则| 百家乐官网站| 施甸县| 淘宝博百家乐的玩法技巧和规则 | 澳门百家乐常赢打法| 大发888游戏官方下| 百家乐官网三路法| 大发888娱乐城casino| 百家乐官网分路单| 百家乐备用网址| 富源县| 百家乐代理在线游戏可信吗网上哪家平台信誉好安全 | 百家乐佛牌| 星河百家乐现金网| 望奎县| 百家乐博赌城| 百家乐官网什么方法容易赢| 太阳城娱乐网址| 大发888缺少 casino| 做生意店子内风水布置| 娱乐场| 百家乐投注限额| 大都会百家乐官网的玩法技巧和规则 | 镇赉县| 百家乐博彩吧| 澳门百家乐打法精华| 百家乐官网那个平台信誉高| 大发888在线娱乐城代理| 百家乐永利娱乐网| 金海岸百家乐官网娱乐城| 澳门百家乐官网必杀技|