全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐黑牌靴| 百家乐龙虎台布多少钱| 兰西县| 新澳博百家乐现金网| 本溪棋牌网| 南宁百家乐官网的玩法技巧和规则| 现场百家乐机| 保德县| 福布斯百家乐的玩法技巧和规则 | 百家乐游戏网上投注| 百家乐官网太阳城娱乐城| 澳门百家乐官网下注最低| 赌片百家乐的玩法技巧和规则| 百家乐官网是否有路子| 泰来百家乐导航| TT百家乐官网现金网| 大发888娱乐城游戏| 百家乐官网筹码皇冠| 百家乐官网赌牌技巧| 玩百家乐上高尔夫娱乐场| 新濠百家乐官网的玩法技巧和规则 | 百家乐官网是怎样的| 上海百家乐赌博| 桃江县| 百家乐特殊计| e世博百家乐技巧| 百家乐官网系统足球博彩通| 金博士娱乐城备用网址| 百家乐五湖四海娱乐平台| 网上百家乐官网网站导航| 德州扑克大盲注| 千亿百家乐的玩法技巧和规则 | 香港六合彩马会| 免费百家乐过滤| 做生意门面对着什么方向好| 百家乐官网八卦投注法| 乳源| 太阳城娱乐城下载| 百家乐游戏| 百家乐官网筹码套装包邮| 韶关市|